Week 2 Video 1

Detector Confidence
Classification

- There is something you want to predict ("the label")
- The thing you want to predict is categorical
It can be useful to know yes or no
It can be useful to know yes or no

- The detector says you don’t have Ptarmigan’s Disease!
It can be useful to know yes or no

- But it’s even more useful to know how certain the prediction is
It can be useful to know yes or no

- But it’s even more useful to know how certain the prediction is
 - The detector says there is a 50.1% chance that you don’t have Ptarmigan’s disease!
Uses of detector confidence
Uses of detector confidence

- Gradated intervention
 - Give a strong intervention if confidence over 60%
 - Give no intervention if confidence under 60%
 - Give “fail-soft” intervention if confidence 40-60%
Uses of detector confidence

- Decisions about strength of intervention can be made based on cost-benefit analysis.

- What is the cost of an incorrectly applied intervention?

- What is the benefit of a correctly applied intervention?
Example

- An incorrectly applied intervention will cost the student 1 minute.
- Each minute the student typically will learn 0.05% of course content.
- A correctly applied intervention will result in the student learning 0.03% more course content than they would have learned otherwise.
Expected Value of Intervention

\[0.03 \times \text{Confidence} - 0.05 \times (1 - \text{Confidence}) \]
Adding a second intervention

\[0.05 \times \text{Confidence} - 0.08 \times (1 - \text{Confidence}) \]
Intervention cut-points

[Graph showing expected gain versus detector confidence with cut-points at -0.12, -0.1, -0.08, -0.06, -0.04, -0.02, 0, 0.02, 0.04, 0.06, and 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The graph is labeled with fail soft and stronger.]
Uses of detector confidence
Uses of detector confidence

- Discovery with models analyses
 - When you use this model in further analyses
 - We’ll discuss this later in the course
 - Big idea: keep all of your information around
Not always available

- Not all classifiers provide confidence estimates
Not always available

- Not all classifiers provide confidence estimates

- Some, like step regression, provide pseudo-confidences
 - do not scale nicely from 0 to 1
 - but still show relative strength that can be used in comparing two predictions to each other
Some algorithms give it to you in straightforward fashion

- “Confidence = 72%”
With others, you need to parse it out of software output

Tree

\[
\begin{align*}
a & > 1.174: \ Y \ \{N=0, \ Y=47\} \\
a & \leq 1.174 \\
| & \quad d > 1.491: \ Y \ \{N=0, \ Y=2\} \\
| & \quad d \leq 1.491 \\
| & \quad \quad d > 1.431: \ Y \ \{N=1, \ Y=2\} \\
| & \quad \quad d \leq 1.431 \\
| & \quad \quad \quad \text{day} > 8.500: \ Y \ \{N=1, \ Y=1\} \\
| & \quad \quad \quad \text{day} \leq 8.500: \ N \ \{N=44, \ Y=1\}
\end{align*}
\]
With others, you need to parse it out of software output

```
Tree

a > 1.174: Y {N=0, Y=47}
a ≤ 1.174
  | d > 1.491: Y {N=0, Y=2}
  | d ≤ 1.491
  |   | d > 1.431: Y {N=1, Y=2}
  |   | d ≤ 1.431
  |   |   | day > 8.500: Y {N=1, Y=1}
  |   |   | day ≤ 8.500: N {N=44, Y=1}
```

C = Y / (Y+N)
With others, you need to parse it out of software output

Tree

\[
a > 1.174: Y \{N=0, Y=47\}
a \leq 1.174
\]
\[
| d > 1.491: Y \{N=0, Y=2\}
| d \leq 1.491
\]
\[
| d > 1.431: Y \{N=1, Y=2\}
| d \leq 1.431
\]
\[
| | day > 8.500: Y \{N=1, Y=1\}
| | day \leq 8.500: N \{N=44, Y=1\}
\]
With others, you need to parse it out of software output

\[C = 66.6667\% \]
With others, you need to parse it out of software output

Tree

\[
\begin{align*}
 a &> 1.174: \text{Y} \{N=0, Y=47\} \\
 a &\leq 1.174 \\
 \quad &d > 1.491: \text{Y} \{N=0, Y=2\} \\
 \quad &d \leq 1.491 \\
 \quad &\quad d > 1.431: \text{Y} \{N=1, Y=2\} \\
 \quad &\quad d \leq 1.431 \\
 \quad &\quad \quad \text{day} > 8.500: \text{Y} \{N=1, Y=1\} \\
 \quad &\quad \quad \text{day} \leq 8.500: \text{N} \{N=44, Y=1\}
\end{align*}
\]

C = 100%
With others, you need to parse it out of software output

Tree

\[a > 1.174: Y \{N=0, Y=47\} \]
\[a \leq 1.174 \]
\[\quad | \quad d > 1.491: Y \{N=0, Y=2\} \]
\[\quad | \quad d \leq 1.491 \]
\[\quad | \quad \quad | \quad d > 1.431: Y \{N=1, Y=2\} \]
\[\quad | \quad \quad | \quad d \leq 1.431 \]
\[\quad | \quad \quad \quad | \quad day > 8.500: Y \{N=1, Y=1\} \]
\[\quad | \quad \quad \quad | \quad day \leq 8.500: N \{N=44, Y=1\} \]

\[C = 2.22\% \]
With others, you need to parse it out of software output

Tree

\[a > 1.174: \ Y \ {N=0, \ Y=47} \]
\[a \leq 1.174 \]
\[\quad | \quad d > 1.491: \ Y \ {N=0, \ Y=2} \]
\[\quad | \quad d \leq 1.491 \]
\[\quad \quad | \quad d > 1.431: \ Y \ {N=1, \ Y=2} \]
\[\quad \quad | \quad d \leq 1.431 \]
\[\quad \quad \quad | \quad \text{day} > 8.500: \ Y \ {N=1, \ Y=1} \]
\[\quad \quad \quad | \quad \text{day} \leq 8.500: \ N \ {N=44, \ Y=1} \]

C = 2.22% (or NO with 97.88%)
Confidence can be “lumpy”

- Previous tree only had values
 - 100%, 66.67%, 50%, 2.22%

- This isn’t a problem per-se
 - But some implementations of standard metrics (like A’) can behave oddly in this case
 - We’ll discuss this later this week

- Common in tree and rule based classifiers
Confidence

- Almost always a good idea to use it when it’s available
- Not all metrics use it, we’ll discuss this later this week
Thanks!