Week 4 Video 4

Knowledge Inference: Item Response Theory
Item Response Theory

- A classic approach for assessment, used for decades in tests and some online learning environments

- In its classical form, has some key limitations that make it less useful for assessment in online learning
Key goal of IRT

- Measuring how much of some latent trait a person has

- How intelligent is Bob?
- How much does Bob know about snorkeling?
- SnorkelTutor
Typical use of IRT

- Assess a student’s current knowledge of topic X

- Based on a sequence of items that are *dichotomously scored*
 - E.g. the student can get a score of 0 or 1 on each item
Key assumptions

- There is only one latent trait or skill being measured per set of items

- No learning is occurring in between items
 - E.g. a testing situation with no help or feedback
Key assumptions

- Each learner has ability θ
- Each item has difficulty b and discriminability a
- From these parameters, we can compute the probability $P(\theta)$ that the learner will get the item correct
The assumption that all items tap the same latent construct, but have different difficulties

Is a very different assumption than is seen in PFA or BKT
The Rasch (1PL) model

- Simplest IRT model, very popular
- There is an entire special interest group of AERA devoted solely to the Rasch model (RaschSIG)
The Rasch (1PL) model

- No discriminability parameter
- Parameters for student ability and item difficulty
The Rasch (1PL) model

- Each learner has ability θ
- Each item has difficulty b

$$P(\theta) = \frac{1}{1 + e^{-1(\theta - b)}}$$
Item Characteristic Curve

- A visualization that shows the relationship between student skill and performance

![Graph showing the relationship between student skill (Theta) and the probability of correct answers (P(Correct))](image)
As student skill goes up, correctness goes up

- This graph represents $b=0$
- When $\theta=b$ (knowledge=difficulty), performance = 50%
As student skill goes up, correctness goes up
Changing difficulty parameter

- Green line: $b=-2$ (easy item)
- Orange line: $b=2$ (hard item)
The good student finds the easy and medium items almost equally difficult.
The weak student finds the medium and hard items almost equally hard.
Note

- When $b = \theta$
- Performance is 50%
The 2PL model

- Another simple IRT model, very popular
- Discriminability parameter a added
\[P(\theta) = \frac{1}{1 + e^{-1(\theta-b)}} \]

Rasch

\[P(\theta) = \frac{1}{1 + e^{-a(\theta-b)}} \]

2PL
Different values of a

- Green line: $a = 2$ (higher discriminability)
- Blue line: $a = 0.5$ (lower discriminability)
Extremely high and low discriminability

- $a=0$
- a approaches infinity
Model degeneracy

- a below 0…
The 3PL model

- A more complex model
- Adds a guessing parameter c
The 3PL model

\[P(\theta) = c + (1 - c) \frac{1}{1 + e^{-a(\theta - b)}} \]

- Either you guess (and get it right)
- Or you don’t guess (and get it right based on knowledge)
Fitting an IRT model

- Can be done with Expectation Maximization
 - As discussed in previous lectures

- Estimate knowledge and difficulty together
 - Then, given item difficulty estimates, you can assess a student’s knowledge in real time
IRT is used quite a bit in computer-adaptive testing.

Not used quite so often in online learning, where student knowledge is changing as we assess it.

For those situations, BKT and PFA are more popular.
Next Up

- Advanced BKT