Week 6 Video 2

Visualization

Moment-By-Moment Learning Graphs
First...

- I’d like to start with an observation about learning curves
They shouldn’t be called learning curves
They should be called performance curves
They should be called performance curves

- Because they show the relationship between performance and time
- You can infer learning from them...
- But they aren’t curves of learning
This was fine for decades...

- Until folks actually wanted to graph learning over time

- Then it became really annoying
Moment-By-Moment Learning Graphs (MBMLG)

- (True learning curves, but we can’t call them that)
Based on the Moment-By-Moment Learning Model

- Discussed in mathematical detail in week 4
Moment-By-Moment Learning Model

- Gives us moment-by-moment assessments of learning
Can be used to create a Moment-by-Moment Learning Curve

- X axis: Opportunity to practice skill
- Y axis: Moment-by-Moment learning assessments
Moment-by-moment learning curves

- Are meaningful to interpret for individual students

- Much harder to do this with traditional learning curves
 - Accuracy = 0 or 1
 - Time is noisy
Let’s look at a few graphs
What might this MBMLG mean?
Insert Pause-Continue Quiz Here
Steady learning
What might this MBMLG mean?
Insert Pause-Continue Quiz Here
A Eureka moment
What would that model correspond to

- In a traditional learning curve?
What would that model correspond to in a traditional learning curve?
A Eureka Moment
What might this graph mean?
Insert Pause-Continue Quiz Here
Corresponds to learning curve
What might this graph mean?
Multiple skills treated as a single skill
Corresponds to (several)
What might this graph mean?
Insert Pause-Continue Quiz Here
It’s still a mystery to me…
(post your ideas on the forums!)
(It turns out to be quite common)
Uses

- To study relationships between learning trajectories and learning outcomes

Table 4 – The correlation between a student’s proportion of a specific visual form of the moment-by-moment learning curve across skills, and their performance on the four learning tests. Statistically significant findings (controlling for false discovery rate) are highlighted in dark gray; marginally significant findings are highlighted in light gray.

<table>
<thead>
<tr>
<th>Curve form</th>
<th>Test</th>
<th>r</th>
<th>F</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>pct single spike</td>
<td>Post-test</td>
<td>0.075</td>
<td>0.400</td>
<td>0.529</td>
<td>0.374</td>
</tr>
<tr>
<td></td>
<td>Transfer test</td>
<td>-0.036</td>
<td>0.095</td>
<td>0.759</td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td>PFL test</td>
<td>-0.139</td>
<td>1.402</td>
<td>0.240</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>Retention Test</td>
<td>-0.094</td>
<td>0.636</td>
<td>0.428</td>
<td>0.330</td>
</tr>
<tr>
<td>pct close multi-spike</td>
<td>Post-test</td>
<td>-0.247</td>
<td>4.610</td>
<td>0.035</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>Transfer test</td>
<td>-0.094</td>
<td>0.634</td>
<td>0.429</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>PFL test</td>
<td>-0.035</td>
<td>0.085</td>
<td>0.771</td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td>Retention Test</td>
<td>0.045</td>
<td>0.142</td>
<td>0.708</td>
<td>0.446</td>
</tr>
<tr>
<td>pct separated multi-spike</td>
<td>Post-test</td>
<td>-0.134</td>
<td>1.301</td>
<td>0.258</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>Transfer test</td>
<td>0.011</td>
<td>0.008</td>
<td>0.927</td>
<td>0.492</td>
</tr>
<tr>
<td></td>
<td>PFL test</td>
<td>-0.113</td>
<td>0.916</td>
<td>0.342</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>Retention Test</td>
<td>0.063</td>
<td>0.285</td>
<td>0.595</td>
<td>0.399</td>
</tr>
<tr>
<td>pct plateau</td>
<td>Post-test</td>
<td>-0.377</td>
<td>11.786</td>
<td>0.001</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Transfer test</td>
<td>-0.276</td>
<td>5.847</td>
<td>0.018</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>PFL test</td>
<td>-0.272</td>
<td>5.663</td>
<td>0.020</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Retention Test</td>
<td>-0.515</td>
<td>25.647</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>pct immediate peak</td>
<td>Post-test</td>
<td>0.092</td>
<td>0.601</td>
<td>0.441</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>Transfer test</td>
<td>0.214</td>
<td>3.399</td>
<td>0.069</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>PFL test</td>
<td>0.017</td>
<td>0.021</td>
<td>0.886</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>Retention Test</td>
<td>0.347</td>
<td>9.725</td>
<td>0.003</td>
<td>0.011</td>
</tr>
<tr>
<td>pct immediate drop</td>
<td>Post-test</td>
<td>0.317</td>
<td>7.930</td>
<td>0.006</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>Transfer test</td>
<td>0.167</td>
<td>2.035</td>
<td>0.158</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>PFL test</td>
<td>0.285</td>
<td>6.286</td>
<td>0.014</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Retention Test</td>
<td>0.206</td>
<td>3.152</td>
<td>0.080</td>
<td>0.102</td>
</tr>
</tbody>
</table>
Uses

- To analyze individual students’ learning
Uses

- To study which learning material most promotes learning

Next lecture

- Heat Maps, Scatterplots, and Parameter Space Maps