Clustering
Validation and Selection of K
How do we choose?

- A value for k
- Which set of clusters to use, after 17 randomized restarts
First...

- Let’s take the case where we have 17 randomized restarts, each involving the same number of clusters
Distortion
(Also called Mean Squared Deviation)

- Take each point P
- Find the centroid of P’s cluster C
- Find the distance D from C to P
- Square D to get D’

- Sum all D’ to get Distortion
Distance

- Usually Euclidean distance
- Distance from A to B in two dimensions

\[\sqrt{(Ax-Bx)^2 + (Ay-By)^2} \]
Distance

- Euclidean distance can be computed for an arbitrary number of dimensions

\[\sqrt{\sum (A_i - B_i)^2} \]
Distortion

- Works for choosing between randomized restarts
- Does not work for choosing cluster size
Why not?

- More clusters almost always leads to smaller Distortion
 - Distance to nearest cluster center should almost always be smaller with more clusters
 - It only isn’t when you have bad luck in your randomization
Cross-validation can’t solve this problem

- A different problem than prediction modeling
 - You’re not trying to predict specific values
 - You’re determining whether *any* center is close to a given point

- More clusters cover the space more thoroughly

- So Distortion will often be smaller with more clusters, even if you cross-validate
An Example

- 14 centers, ill-chosen (you might get this by conducting cross-validation with too many centers)

- 2 centers, well-chosen (you might get this by conducting cross-validation with not enough centers)
An Example

- The ill-chosen 14 centers will achieve a better Distortion than the well-chosen 2 centers
Solution

- Penalize models with more clusters, according to how much extra fit would be expected from the additional clusters.

- You can use the Bayesian Information Criterion or Akaike Information Criterion from week 2.
 - Not just the same as cross-validation for this problem!
Using an Information Criterion

- Assess how much fit would be spuriously expected from a random N centroids (without allowing the centroids to move)
- Assess how much fit you actually had
- Find the difference
So how many clusters?

- Try several values of k

- Find “best-fitting” set of clusters for each value of k

- Choose k with best value of BiC (or AIC)
Alternate approach

- One question you should ask when choosing the number of clusters is – why am I conducting cluster analysis?

- If your goal is to just discover qualitatively interesting patterns in the data, you may want to do something simpler than using an information criterion.
 - Add clusters until you don’t get interesting new clusters anymore.
Next lecture

- Clustering – Advanced clustering algorithms