Knowledge Inference: Other Structures
How do we get a skill-item mapping?

- Hand-development and refinement
- Automatic model discovery
- Hybrid approaches
Hybrid Approaches

- The most popular hybrid approach is called Learning Factors Analysis

Learning Factors Analysis (LFA)

- Uses a mathematical model similar to Performance Factors Analysis
- Adds a student parameter, has only one learning parameter per skill
Learning Factors Analysis (LFA)

- Take an existing skill-item mapping
- Add a set of potential candidate “learning factors”

- Repeatedly tries to split skills based on learning factors
 - Using A* space search algorithm

- For Skill A, Learning Factor B
- Test new skills (A and B), (A and not B)
Three Ways to Improve Skill-Item Mappings

- Hand-development and refinement
- Automatic model discovery
- Hybrid approaches
Why is this important?

- A good skill-item mapping is a prerequisite to using algorithms like BKT, PFA
- If you consider irrelevant evidence (student performance at hockey when predicting math)
- You’ll have ineffective prediction
A limitation of Q-Matrices

- Assumes no relationship between skills
- Except that a specific item can involve multiple skills
A definite limitation

- Several ways that skills can interconnect
Partial Order Knowledge Structures

Partial Order Knowledge Structures

- Postulate relationships between items

- Mastery of one item is \textit{prerequisite} to mastery of another item
Example (Desmarais et al., 2006)

If student succeeds at C, they will succeed at D; D is prerequisite to C

B does not inform us about C

If student succeeds at C, they will succeed at D; D is prerequisite to C
Extension to skills

- POKS can be extended rather easily to use skills (interchangeable items) rather than items
Bayesian Networks

- Less restricted set of models that also infer relationships between skills and items, and between skills

- Can infer more complicated relationships between material than the very restricted set of relationships modeled in POKS
 - Can infer {skill-skill, item-item, skill-item} relationships at the same time
 - Can model hierarchies of skills and meta-skills
 - Can integrate very diverse types of information

- That extra flexibility can lead to over-fitting (cf. Desmarais et al., 2006)
Martin & VanLehn (1995)
Conati et al., 2009
Shute et al., 2009

Success in Oblivion

Cognitive
- Attention
- Domain Knowledge
 - Working Memory
 - Reading Comp
 - Listening Comp
 - Speaking Skill

Noncognitive
- Creative Problem Solving
- Problem Solving
- Creativity
 - Efficiency
 - Novelty
- Persistence
 - Reflection
 - Exploratory Behavior
Propagation of Information

Several algorithms are used for propagating information around a Bayes Net

If we know that a student has skill A

Then this provides us with information about all of that skill’s prerequisite skills
And some information for skills for which skill A is a prerequisite
And some information about relevant meta-skills
Bayes Net or Simpler Model?

- How much do the interconnections between your skills matter in the context of your learning system?
- How much do you care about hierarchy in skills?
- The cost of a Bayes Net is complexity, over-fitting, and over-propagation of information
Tools for creating Bayes Nets

- Netica
 - http://www.norsys.com/netica.html

- SamIam
Next Up

- Week 8: Advanced Topics